

Factors Affecting the Willingness to Use Decision Support Systems in a Military Context

Research Project in Cooperation with the *Bundeswehr Office for Defense Planning* and the *Helmut Schmidt University*

October 31, 2023

Introduction of the Authors

- Captain Oliver Bornschlegl, M.Sc.
- Mathematical Engineering at the University of the German Armed Forces in Munich (2018)
- IT-Officer and Analyst
 - Assistant Head of Branch at the Bundeswehr Office for Defense Planning – Scientific Support and Interoperability (since 2020)

- Mr Georg-Friedrich Goehler, M.Sc.
- General engineering science at Technical University Hamburg (B.Sc.)
- International management and engineering at Technical University Hamburg (M.Sc.)
- Project employee working on my PhD at Helmut Schmidt University

What are Decision Support Systems

Analytical Methods

Results

Limitations

Analytical Methods

Results

Limitations

The Research Projekt

What are the Factors Affecting the Willingness to Use Decision Support Systems in a Military Context?

Scientific basis for the development & implementation of DSS in the military

Literature Review

Public and military sources

→ Deductive Factors

Qualitative Study

Semi-structured Interviews

→ Inductive Factors ←

Quantitative Study

Questionnaire
Structural Equation
Modeling

Hypothesis & Basis for scale development

Analytical Methods

Results

Limitations

Data Collection

- Semi structured interviews
- Use of scenarios
- Collecting expert contributions on deductive factors from the literature
- Collecting further contributions to DSS, which form the basis for inductively collected factors
- Conducting the interviews until saturation

Example of a scenario to query the deductive factor explainability

Scenario:

The decision support system "INT-Checker" reads and evaluates reports from all accessible sources. It compares and evaluates all sources and can search more sources than a human analyst. Furthermore, it evaluates the plausibility of the results in a gradual gradation by assigning a value between 0 and 10. The value 0 is assigned for a classification as not plausible, and the value 10 for a classification as plausible.

Situation:

An immediate message arrives from the HUMINT area. There is an urgent warning of an air landing in the own area near Neustadt an der Donau in one hour. The information is assessed as trustworthy by the analyst. However, the system "INT-Checker" evaluates the information as not trustworthy.

• Question:

Would you trust the system in this case, even if you cannot understand the decision?

9

Data Processing

- Transcription of the interviews on the basis of sound recordings
- Coding of the transcribed interviews with MAXQDA software
- Allocation of code segments to deductive and inductive factors
- Creation of the inductive factors during the code segment assignment process

Analytical Methods

Results

Limitations

Results

Deductive Factors

Resilience

Speed

Explainability

Transparency

Mediators

Willingness to use DSS

Acceptance of

Willingness to use DSS

Trust in

Inductive Factors

Traceability

Controllability

Experience

Usefulness

Resilience

Speed

Explainability

Transparency

Mediators

Willingness to use DSS

Acceptance of

Willingness to use DSS

Trust in

Inductive Factors

Traceability

Controllability

Experience

Usefulness

Resilience

Persistency of service provision in the light of changes and uncertainties

Resilience

Speed

Explainability

Transparency

Mediators

Willingness to use DSS

Acceptance of

Willingness to use DSS

Trust in

Inductive Factors

Traceability

Controllability

Experience

Usefulness

Speed

- Time advantage generated in decisionmaking
- Integration into work processes and structures

Resilience

Speed

Explainability

Transparency

Mediators

Willingness to use DSS

Acceptance of

Willingness to use DSS

Trust in

Inductive Factors

Traceability

Controllability

Experience

Usefulness

Explainability	Traceability
To grasp and communicate the system's output	To review the system's functionality
communication process decision maker ⇔ Analyst	understanding process Analyst ⇔DSS

Resilience

Speed

Explainability

Transparency

Mediators

Willingness to use DSS

Acceptance of

Willingness to use DSS

Trust in

Inductive Factors

Traceability

Controllability

Experience

Usefulness

Transparency

- > characteristics of a white box
- > Transparency regarding
 - Causal relationships
 - Abstraction steps
 - Information input

Resilience

Speed

Explainability

Transparency

Mediators

Willingness to use DSS

Acceptance of

Willingness to use DSS

Trust in

Inductive Factors

Traceability

Controllability

Experience

Usefulness

Controllability

- Influence the system so that it operates in the desired manner
- Train and guide DSS in a similar way to a human analyst
- DSS must accept feedback

Resilience

Speed

Explainability

Transparency

Mediators

Willingness to use DSS

Acceptance of

Willingness to use DSS

Trust in

Inductive Factors

Traceability

Controllability

Experience

Usefulness

Experience

- Individual experiences of the user
- Transmission of collective experiences of the user community

Resilience

Speed

Explainability

Transparency

Inductive Factors

Traceability

Controllability

Experience

Usefulness

Mediators

Willingness to use DSS

Acceptance of

Willingness to use DSS

Trust in

Usefulness

- DSS providing beneficial services
 - Assist in managing complexity
 - Highlight what would be unpredictable or easily missed

Resilience

Speed

Explainability

Transparency

Inductive Factors

Traceability

Controllability

Experience

Usefulness

Mediators

Willingness to use DSS

Acceptance of

Willingness to use DSS

Trust in

Acceptance and Trust

- Explain causal relationships
- Both act as Mediators in Structural Equation Model

Resilience

Speed

Explainability

Transparency

eed Acceptance of

Trust in

Mediators

Willingness to use DSS

Willingness to use DSS

Traceability

Inductive Factors

Controllability

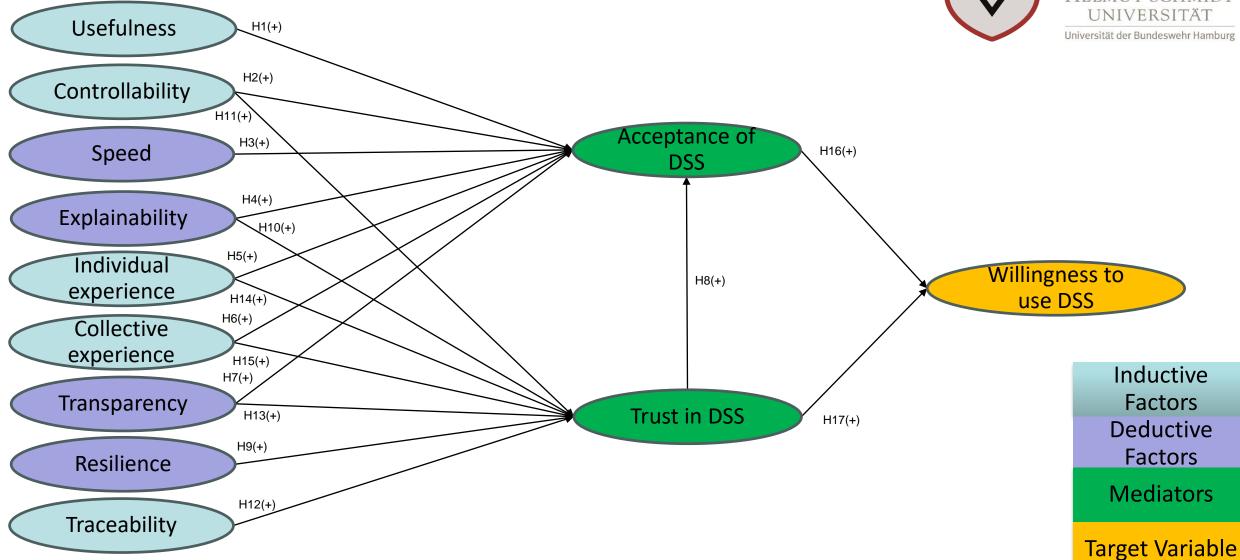
Experience

Usefulness

Factors Affecting the Willingness to DSS

- Research topic of this project
- Dependent variable in Structural Equation Model

Results - Hypotheses


Inductive

Factors

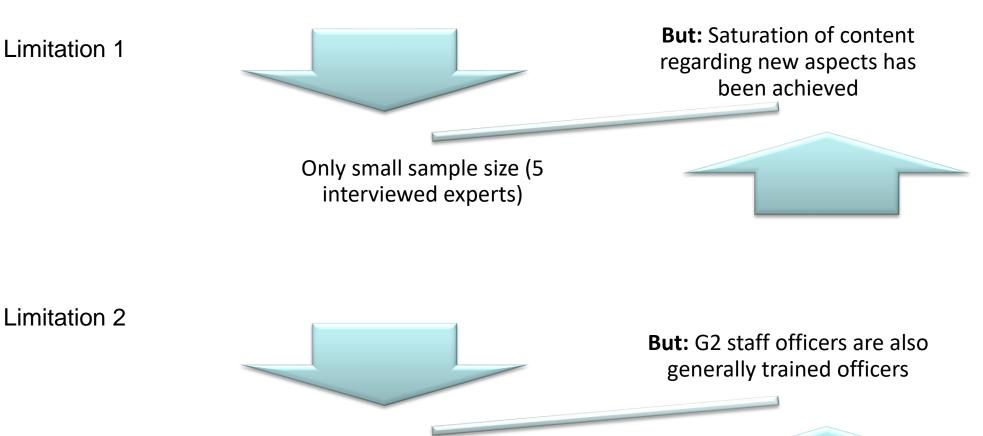
Deductive

Factors

Mediators

Analytical Methods

Results


Limitations

Context of the limitations:

All interviewed experts are G2 staff officers

Analytical Methods

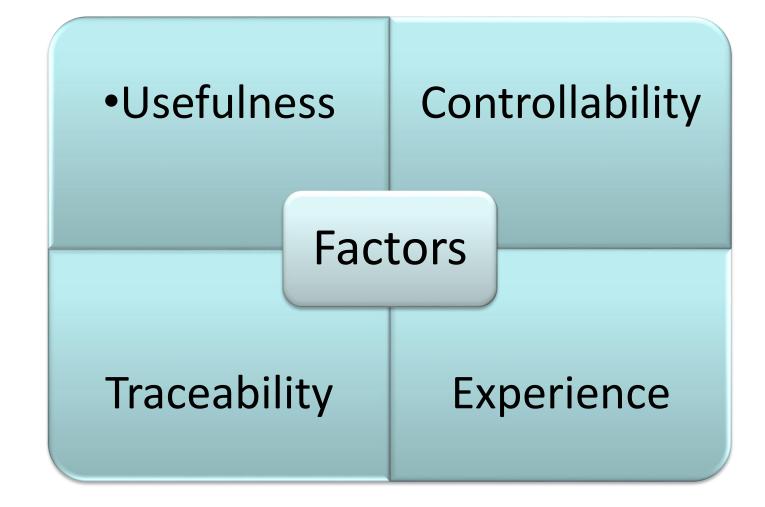
Results

Limitations

Main expectations of experts for DSS:

Acceleration in decision making

Making complexity in decision making more manageable


More resilience in decision making

Factors with effect on trust in and acceptance of DSS were surveyed inductively

Key takeaways

Desire to retain decision-making autonomy as a user of DSS

Demand for systems that can be adapted to the user's specifications.

Need to question statements or assessments of the DSS and compare them for control reasons.

Thank you for your attention

References

Hair, J.F., Hult, G.T.M., Ringle, C.M. and Sarstedt, M. (2017), A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed., Sage, Los Angeles.